I. LOCATOR INFORMATION:
Semester/year: Spring 2014
Course: FORS 410-01 Technical Writing in Forensic Science.
Semester hours: 3
Day/Time Class Meets: Lectures: TR 3:45 to 5:00
Room/Building: STB 338
Instructor (s): Marcus A. Hunt, Ph.D.
Office Location: STB 323
Office Telephone: 672-2304
FSU e-mail mhun4@uncfsu.edu
*Office Hours: M – R 11:30 – 1:30 or by appointment

FSU Policy on Electronic Mail: Fayetteville State University provides to each student, free of charge, an electronic mail account (username@uncfsu.edu) that is easily accessible via the Internet. The university has established FSU email as the primary mode of correspondence between university officials and enrolled students. Inquiries and requests from students pertaining to academic records, grades, bills, financial aid, and other matters of a confidential nature must be submitted via FSU email. Inquiries or requests from personal email accounts are not assured a response. The university maintains open-use computer laboratories throughout the campus that can be used to access electronic mail.

Rules and regulations governing the use of FSU email may be found at http://www.uncfsu.edu/PDFs/EmailPolicyFinal.pdf

II. COURSE DESCRIPTION
FORS 410 Technical Writing in Forensic Science (3-3-0)
This course provides students with a working knowledge of various types of technical and scientific communication, including writing proposals, instructions, and forensic reports for both specialist and non-specialist. It aims to enable the students to present information professionally in clear, concise and appropriate format. It deals with ethical issues involved in professional technical writing. Formal elements of reports with library research are also emphasized. Prerequisite: FORS 200; FORS 300.

III. TEXTBOOKS
Required

Supplemental

Because of the rapid advances in the sciences, another primary source for students will be the research
literature. Speak with the Chesnutt Library staff to familiarize yourself with the various methods for conducting literature searches, the organization of the library, and the location of journals and reference material relevant to the biological sciences. A list of other textbooks and reference materials is included in the Bibliography section of this syllabus.

IV. LEARNING OUTCOMES

Upon the completion of this course, students will be able to demonstrate their knowledge and understanding of:

1. The basic principles of scientific/technical communications.
2. The components of a scientific/technical paper.
3. Reading and understanding a scientific/technical paper.
4. Editing and scientific style.
5. Use of the scientific literature and Internet resources.
7. Elements of a good oral presentation.
10. Preparing a technical report using the research literature/laboratory results.
11. Ethical considerations related to scientific communication.

V. COURSE COMPETENCIES

Upon completion of this course all students will be able to demonstrate:

Locate resources; design and conduct inquiry-based, open-ended investigations in the sciences; interpret findings, communicate results and make judgments based on evidence.

1. The ability to organize and present ideas coherently.
2. An improved proficiency of communication skills and logical thinking.
3. The ability to read and critically evaluate a scientific research and technical articles.
4. The ability to identify and utilize the scientific and technical literature and appropriate Internet resources.
5. The ability to prepare and present an oral presentation using PowerPoint.
6. The ability to interpret and critically evaluate experimental data.
7. The ability to think critically and express him/herself creatively.
8. The ability to prepare a research paper on a chosen topic.
9. The basic principles of scientific communication.
10. The ethical considerations concerning expert testimony.
11. The elements of clear, concise writing.
12. The importance of clear, concise writing in helping one’s case.
13. The process of discovery in a legal setting, and how it relates to the writing of a technical report.
VI. EVALUATION CRITERIA/GRADING SCALE

Students will be evaluated based on performance on written exams, a term paper and other writing assignments, and an oral presentation. The weights used to determine the students final average will be as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing Assignments</td>
<td>60</td>
</tr>
<tr>
<td>Presentations</td>
<td>20</td>
</tr>
<tr>
<td>Exams</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

The final grade will be determined on the following basis:

<table>
<thead>
<tr>
<th>Percent of Points</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 – 100</td>
<td>A</td>
</tr>
<tr>
<td>80 – 89</td>
<td>B</td>
</tr>
<tr>
<td>70 – 79</td>
<td>C</td>
</tr>
<tr>
<td>60 – 69</td>
<td>D</td>
</tr>
<tr>
<td>< 60</td>
<td>F</td>
</tr>
</tbody>
</table>

Policy on Missed or Late Assignments

Students are required to take all EXAMS ON THE DATE THEY ARE SCHEDULED. Make-up exams/presentations WILL NOT be given unless the student has made special arrangements with the instructor prior to the exam/presentation date and presents a written excuse before the third class period following the initial date of a test. Only in very unusual cases will any exceptions to these rules be made.

Work handed in or reported LATE WILL NOT be accepted, unless accompanied by a valid written excuse. If you miss an assignment due to an unexcused absence, it WILL NOT be accepted. If a student is absent, then they can make up the assignment if a proper excuse is provided. (This applies to Lecture only!)

If you must be absent unavoidably, ask a friend to get your assignment, take notes for you, and pick up any handouts. You are also responsible for demonstrating an understanding of content covered in class on the day of the absence. Students are required to attend all classes regularly and to keep appointments when they are scheduled. An absence, excused or unexcused, does not relieve the student of any course requirement.

Student Behavior Expectations: -The instructor will respect all students and will make every effort to maintain a classroom climate that promotes learning for all students. Students must accept their responsibility for maintaining a positive classroom environment by abiding by the following rules:

1. Students are expected to arrive to class on time, remain in class until dismissed by the instructor, and refrain from preparing to leave class until it is dismissed.
2. Students are not permitted to sleep in class.
3. Student relationships among peers must be respectful at all times.
4. Students are not permitted to wear headphones or other paraphernalia that may be distracting to the classroom environment. Students are not permitted to tape or record the class lectures or lab reviews.
5. Students must refrain from any activity that will disrupt the class; this includes turning off cell phones and pagers. Cell phones and pagers are not allowed to be operational during lecture or lab periods.
6. Students are not permitted to use profanity in the classroom.
7. Students should not pass notes or carry on private conversations while class is being conducted.
8. Students are not to wear hats, caps, do-rags, or scarves. This applies to males and females.
9. Students are not permitted to have visitors in the class. Also, children are NOT permitted in lecture, lab or in the instructor’s office. In addition, children are not permitted to be in the hallway while the parent is in lecture or lab.

Consequences for Failing to Meet Behavioral Expectations: The first time a student violates one of these rules, the instructor will warn him or her privately, either after class or before the next class. The second time a student violates the guidelines; the instructor may deduct as many as twenty-five (25) points from the student’s next exam grade. If a student violates the guidelines three times, the instructor will report the student to the Dean of Students for disciplinary action according to the FSU Code of Student Conduct.

VII. **ACADEMIC SUPPORT RESOURCES:**

FORS 410 Selected Course Material on Blackboard at http://blackboard.uncfsu.edu/

Internet sites:

3. http://owl.english.purdue.edu/ (Purdue Writing Lab)
4. http://www.wisc.edu/writing/ (Wisconsin Writing Lab)

Smart Thinking Online Tutoring: [http://www.smarthinking.com/static/pub_common(hours.cfm)](http://www.smarthinking.com/static/pub_common(hours.cfm)

The Learning Center in the H.T. Chick Building is available to assist students with writing, mathematics, and reading.

VIII. **TENTATIVE COURSE OUTLINE**

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course introduction & technical communication introduction</td>
</tr>
<tr>
<td>2</td>
<td>Profiling audiences</td>
</tr>
<tr>
<td>3</td>
<td>Technical communication process</td>
</tr>
<tr>
<td>4</td>
<td>Technical communication style</td>
</tr>
<tr>
<td>5</td>
<td>Researching</td>
</tr>
<tr>
<td>6</td>
<td>Designing pages</td>
</tr>
<tr>
<td>7</td>
<td>Visual aids</td>
</tr>
<tr>
<td>8</td>
<td>Describing</td>
</tr>
<tr>
<td>9</td>
<td>Spring Break</td>
</tr>
<tr>
<td>10</td>
<td>Informal reports & e-mail</td>
</tr>
<tr>
<td>11</td>
<td>Formal reports</td>
</tr>
<tr>
<td>12</td>
<td>Formal reports</td>
</tr>
<tr>
<td>13</td>
<td>Presentations</td>
</tr>
<tr>
<td>14</td>
<td>Presentations</td>
</tr>
<tr>
<td>15</td>
<td>Resumes and cover letters</td>
</tr>
</tbody>
</table>
IX. COURSE REQUIREMENTS

The purpose of this course is not to acquire scientific knowledge or problem-solving techniques, but to apply these techniques to a specific problem and effectively communicate any conclusions reached. Clear, grammatical writing is, of course, important in many settings. However, many scientists lack written communication skills; this may be because science courses do not sufficiently stress them. This is particularly unfortunate because the delivery of technical ideas to a non-technical audience—with the outcome of a trial at stake—is perhaps the situation that is most demanding of just these skills.

Although most of the course will stress writing, there is an element that covers statistics. In the forensic science curriculum, students will be exposed to statistics in Analytical Chemistry, and again in a math course: Probability and Statistics. Here, statistics will be covered in a way that stresses how one communicates statistical results, such as confidence limits. This is especially important in the forensic setting; in particular, in not being led to draw conclusions more firm than the data allow.

Examination questions will be in the nature of factual recall, or in writing short essays based on given raw data. Students are required to take all exams on the date they are scheduled. Make-up exams will not be given unless a student presents a university-approved excuse before the third class period following the initial date of a test or unless special arrangements have been made with the instructor prior to the exam date. Only in very unusual cases will any exceptions to these rules be made.

The term paper is a research-based study on a forensic science-related topic. The paper will be evaluated both on content and on how well the writer applied the principles of composition that were covered in the course. The oral presentation will comprise a conclusion based on given data.

X. TEACHING STRATEGIES

People have different styles of learning. Some are active learners, who learn by trying things out or talking with a group; and others are reflective learners, who do better by taking time to think things through, preferably on their own. Research has shown undergraduates to be a fairly even mix of both. The lecture-only format benefits neither!

Some are sensing learners, who focus on facts and what they can sense, want to see “real-world” applications, are good with details, and prefer to learn just one good way to do a problem and master that way. Others are intuitive learners, who like variety, have an interest in the theoretical and abstract, hate “plug-and-chug”, and are less careful/methodical when working through a problem (but arrive at the answer more quickly). Are you more of a sensing learner? Most students are.

Some people are visual learners, who require a picture to understand something, have a hard time understanding by reading the textbook, and prefer a map of an unfamiliar place rather than written or oral directions. Others learn best through written or spoken words. Most people are visual learners, though the content of most classes is conveyed verbally.

Finally, there are sequential learners and global learners: Sequential learners can take in pieces of information one step at a time, connecting them logically, and using them to answer questions on a test, even if they don’t have a clear overall picture. Global learners have a hard time doing much of anything with the pieces of information until they understand the overall picture; but once they get that picture, they can not only answer the test questions but they can find connections, both within and outside the course curriculum, that would not occur to the sequential learners. Most people are sequential learners, and most curricula are geared towards them. Global learners have a problem: their weaknesses are serious drawbacks in a classroom setting (by the time they finally get the big picture, the class has moved on to another topic), and their strengths rarely help much. But if global learners can somehow make it through, they stand to make great contributions to society, and it would be tragic to lose them.

I will continue to try to use research-based models (such as the above Felder-Silverman model) in the classroom. The key is balance: teaching only in the less preferred mode would simply result in you not learning anything. But teaching only in the more preferred mode would only make visual learners more visual, sensing learners more sensory, and sooner or later you’ll need to find some balance. Besides, it would be impossible to accommodate everybody’s particular style. But recognizing that the different learning styles exist will help me adjust my teaching style as needed.
XI. BIBLIOGRAPHY

Students are encouraged to review each current issue and read appropriate articles in the science journals available in the C. W. Chesnutt Library (See Complete List Below). Students are also encouraged to make full use of the Internet resources, including Medline which is available through the Chesnutt Library’s Pubmed System or through the NIH/NML website at www.ncbi.nlm.nih.gov. Other web resources include:

1. www.hum-molgen.de (which contains numerous resources for genetics)
3. http://www.sciencedirect.com (provides access to journal articles online and for downloading)

BOOKS

NOTE: THIS COURSE IS SUPPORTED BY A BLACKBOARD WEBSITE. STUDENTS SHOULD VISIT THIS SITE REGULARLY TO REVIEW COURSE REQUIREMENTS AND ASSIGNMENTS. THIS SITE IS AVAILABLE THROUGH THE FSU WEBSITE: http://blackboard.uncfsu.edu.
THERE ARE SEVERAL SCIENCE JOURNALS IN THE C. W. CHESNUTT LIBRARY AVAILABLE, PLEASE VISIT LIBRARY AND CONTACT STAFF ON CIRCULATION DESK TO FAMILIARIZE WITH VARIOUS METHODS FOR CONDUCTING LITERATURE SEARCHES.

DISCLAIMER
To accommodate emergent circumstances, the professor reserves the right to make reasonable changes in the syllabus while the course is in progress. Any understandings between a student and the professor including, but not limited to, changes, expectations, or modifications to course requirements or procedures must be in writing and must be signed by both parties. Any question of interpretation of course requirements or of understandings between a student and the professor will be at the discretion of the professor.