Return to the Fayetteville State University Home Page

Department of Mathematics and Computer Science

FSU HomeMACSCFaculty and StaffFrank-Nani

Dr. Frank Nani

Professor in Mathematics

Office: Science & Technology 420

Phone: (910) 672-1793


Personal Homepage:


November 1998, PhD. in Applied Mathematics

University of Alberta, Canada Department of Mathematical Sciences. Dissertation Title: Mathematical Models of Cancer  Chemotherapy and Immunotherapy. Supervisor: Dr. H.I. Freedman    

January 1986-September 1987, Graduate Student and Alberta Cancer Board Scholar

Faculty of Medicine Division of Oncology, Cross Cancer Institute, University of Alberta.  

Research Title: Mathematical Modeling of the the processes of Radio-protection and Radio-Sensitization during Cancer Radiotherapy. Supervisors: Drs. Cameron Koch, Alan Chapman, ALA Fields (Later transferred to the Department of Mathematics, University of Alberta)                    

November 1985     M.Sc (Theoretical  Physics)

Theoretical Physics Institute, University of Alberta. Dissertation Title: Generalized Solutions  to the Einstein Gravitational Field Equations.

Supervisors: Dr. Garry Ludwig and Dr. Werhner Israel  

June 1980  B.Sc (Honors)

Department of  Physics. University of Science and Technology, Kumasi Ghana.

Dissertation Title: Theoretical Analyses and  Computation of Lattice Dynamical Properties of Transition Metals and  Copper-Gold Alloy. Supervisors: Dr. Kershaw Singh


My teaching spans the following   topics and courses:

Ordinary Differential Equations: Math 331, Math 431, Math 571

Partial Differential Equations: Math 425,Math 671

Complex Analysis:  Math 541, Math 641

Real Analysis: Math 412, Math 461

Linear Algebra: Math 251, Math 507, Math 611

Mathematical Modeling: Math420 Calculus Math 142, Math 241, Math 242

College Algebra and Pre-College Algebra: Math 123 Math 121

Pre-Calculus: Math 131           


Mathematical Medicine: Axiomatization of Clinical Medicine, Computational Clinical Immunology, Computational Cancer Chemo./,Immuno./ Radio. Therapy, Digital Cancer Chemotherapy,

Modeling Dynamics of HIV-1  AIDS Pathophysiology, Mathematical Principles of HAART Therapy of AIDS,

Modeling, Analyses of Pathophysiology of Type2 Diabetes  

Derivation of Cure Criteria for Cancer, AIDS, and Diabetes  

Mathematical Principles of Evidence Based Medicine  

heoretical Medicine, Statistical Basis of  Evidence Based Medicine (EBM)

Mathematical Physics: Generalized Hilbert Space Solutions to Einstein's Equations  Relativistic Cosmology, Solving Einstein Field Equations at Null Infinity, Black-holes and Gravitational Collapse   

Mathematical Principles of Counter Multi-Insurgency Warfare 

Theoretical Physics:  Lattice Dynamics of Transition Metals using De Launey Angular Force Mode (DAF)l.               

Theoretical Applied Mathematics        Ordinary Differential Equations and solutions in Banach Space, Functional Differential Equations in Banach Spaces,  Mathematical and Computer Modeling, Optimal Control Theory

Mathematical Finance


(1).Nani, F. and Ludwig, G.(1985)

Generalized Newman-Unti Expansions: Solutions to Einstein Gravitational Field Equations. Physics Letters, 1985, vol. 113A pp 11-16  

(2)Nani, F. and Oguztorelli, N. M. (1992). Modeling and Simulation of Drug Delivery to the Central Nervous System. Biomedical Modeling and Simulations IMACS, 1992, pp 351-367                 

(3)Nani, F. and Oguztorelli, N. M. (1994) Modeling and Simulation of Rosenberg-Type Adoptive Cellular Immunotherapy. IMA Journal of Mathematics and  Applied Medicine, vol. 11 pp 104-147     

(4)Nani, F. and Oguztorelli, N. M.(1999) Modeling and Simulation of Chemotherapy of Hematological and Gynecological Cancers. IMA Journal of Mathematics and Applied Medicine, vol. 16 pp 39-91  

(5)Nani F. Freedman. H.I.  (2002) A  Mathematical   Model  for   Cancer  treatment  by   Immunotherapy Mathematical   Biosciences 163   pp159-199   

(6)Nani, F., Pinho, S., and Freedman, H. I. (2002) A Chemotherapy Model for the Treatment of Cancer with Metastasis .Mathematical and Computer Modeling.  Modeling, 2002, vol. 36 pp 773-803         

(7)Nani, F.  and Jin, M. (2010) Mathematical Modeling and Simulation of Latency Phase HIV-1 Dynamics. International Conference on Bioinformatics and Computational Biology BIOCOMP10  pp428-434.      

(8)Nani, F.  and Jin, M. (2011) Criteria for Annihilation of HIV-1 During HAART. International Conference on Bioinformatics and Computational Biology . BIOCOMP11  pp679-685.   

(9)Nani F  and Jin M. (2011) Criteria for Annihilation of HIV-1 During HAART. International Conference on Bioinformatics and Computational Biology .BIOCOMP11  pp679-685.   

(10).Nani, F.  and Jin ,M.(2011) Dynamics of HIV-1 Associated Kaposi Sarcoma  During HAART. International Conference on Bioinformatics and Computational Biology BIOCOMP11 pp783-786.   

 (11)Nani, F.  and Jin, M.(2011) Computer Simulation of a Mathematical Model of HAART Therapy for HIV-1 AIDS CISP/BME1 2011 Conference Proceedings pp1846-1853. c IEEE 2011 9781424493500/11.   

(12)Nani, F.  and  Jin ,M.(2014). Theoretical Analysis and Simulation of Acute and Chronic Phase HIV-1 Dynamics . British Journal of Mathematics and Computer Science pp1450-1479.  

(13)Nani, .F and  Jin, M.(2014) Numerical Algorithm for Solving a Generalized Cancer Chemotherapy Problem. Int'l Conf. Modelling Sim. And Vis. Methods. (MSV(14))  pp85-91 Copyright CSREA Press ISBN 160132-281-X.   

(14)Nani, F. and Jin ,M.(2015)Generalized Theoretical Criteria for Annihilation of HIV-1 virions   during. HAART (2015 ) British Journal of Mathematics and Computer Science 5(2) pp262-299 ISSN.    

(15)Nani, .F  and Jin,M.(2015) Mathematical Modeling and Simulations of the Pathophysiology of Type-2 Diabetes Mellitus. CISP/BME1 2015 Conference Proceedings . pp296-300. c IEEE.   

(16)Nani, F. and Jin, M. (2015).Analysis of Dynamics of HIV-1 Associated Kaposi Sarcoma during HAART and ACI. (peer-reviewed/ in press. British Journal of Mathematics and Computer Science. 

A Constituent Institution of The University of North Carolina